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Dependencies - An Introduction

Mary C. Christman

Univ. of Florida

Department of Statistics - IFAS

3/9/2006 USDA Spatial Models Workshop 2

Lattice Models

Area of interest is subdivided into mutually exclusive and 
exhaustive plots, strata, or subareas

Data are aggregated or summary values for each 
subarea

EXAMPLE: Sudden Infant Death Syndrome statistics for 

counties in North Carolina in the 1970s
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Additional Comments

Note that unlike geostatistical modeling, in lattice 

models there is no concept of interpolating 

between plots or subareas.

As a result, we are less interested in mapping 

and more interested is modeling such as  

regression with correlated data or mixed models 

with covariance matrices that are not diagonal
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Questions

Classic models are used to test hypotheses about 

explanatory variables (factors, covariates, etc) 

Q: Should we worry about spatial autocorrelation? 

If so, how should the spatially-explicit aspect be 
incorporated into our modeling effort? 

When planning a study, need to address: 

Spatial arrangement of treatments if planned experiment 

Spatial arrangement of plots when observational study
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Additional Comments

Traditionally, the spatial autocorrelation that was 

presumed to be a potential problem was handled 

in experimental designs using such techniques 

as blocking

E.g. the Average Distance Balanced Design in which 
treatments are arranged spatially so that the average 
distnace between plots of different treatments is 
approximately constant over all treatments
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Classic Model Assumptions

For General Linear Models

Error terms are Normally distributed with constant mean (µ = 

0) and variance (σ2) and 

Error terms (and hence the responses) are independent 

For Generalized Linear Models

Response Variable is distributed appropriately (usually 

Binomial, Poisson or similar) with a mean that is a function of 

covariates (µµµµ = Xββββ) and variance that depends on the mean.

The responses are independent 
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Additional Comments

Even with restricted randomization methods to 

account for spatial arrangement of locations,

there may still be spatial autocorrelation and hence 
the error terms/response variables are not 
independent 

and so classical assumptions fail.
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Failure of the Independence Assumption

Due to non-spatial issues such as sampling 

design 

E.g. blocking, clustering or temporal effects

Due to Spatial autocorrelation

Correlation between 2 values of the response 
variable, Y(si) and Y(sj) at locations si and sj, is non-
zero and a function of distance

How does it arise? 
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Additional Comments
Non-spatial lack of independence is handled as usual, 
e.g. random blocks or time series. 

Spatial lack of independence is handled using 
autocorrelation covariance matrices that require 
additional information 

form of the non-independence (as a function of distance), 

neighborhood structures, etc.  

Note: I assume that distance is Euclidean unless 
otherwise specified
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Sources of Spatial Autocorrelation in Y

Induced 

Values close in space could be similar due to 

an important explanatory variable that varies 

smoothly in space 

l E.g. The spatial distribution of bell pepper fungus in 
a field 

• could be due to spatial distribution of soil moisture

• could be due to geography (e.g. elevation changes) 
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Example - Bell Pepper fungus 
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Leaf Disk Assay

Field plot was 

subdivided into 400
1x1 m subplots. 

In each subplot, 5 leaf 

disks were assayed for 

presence of fungus.

Recorded number that 

tested positive. 

See Larkin et al. 1995. Phytopath 85:191-203
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Additional Comments
Graph shows the number of leaf disks assays that 
tested positive for fungus (out of 5) for each 1x1 m plot 
within the study area. 
Note the trend (low in SE corner, high in NW corner) as 
well as grouping of similar values spatially.
The next slide shows that the pattern may be related to 
soil moisture, i.e. the spatial patterns show similarity. Is 
it possible that moisture is a partial predictor for fungus 
presence? 
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Example - Bell Pepper fungus 
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Leaf Disk Assay Soil Moisture
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Sources of Spatial Autocorrelation in Y

True

Intrinsic, underlying covariance that is a function of 
distance

l E.g. for the spatial distribution of soil moisture, it could be 

due to soil characteristics that allow water movement into 

and through adjacent plots 

Causal interaction among nearby locations

l E.g. The spatial distribution of leaf fungus could be due to 

dispersal mechanism

• Leaves touching vs. air dispersal
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Sources of Spatial Autocorrelation in Y

Spurious
Values close in space could be similar due to 
chance

l E.g. due to the spatial arrangement of the sampling 
locations  

l E.g. due to smoothing of the data during preliminary 
data management

l E.g. due to the scale at which the data have been 
aggregated 

3/9/2006 USDA Spatial Models Workshop 16

Additional Comments
Spurious autocorrelation is unlikely for the bell pepper 
fungus dataset since plots are small and there is no data 
manipulation prior to analysis.  

Spurious autocorrelation is the hardest to capture and 
identify. 

An example would be in precision agriculture due to the slight 
delay in recording soil attributes. The recording device often has 
a delay of 3-4 seconds but the location is recoded not where the 
data were collected but where the recorder reports the value.

See this sometimes in satellite images as well due to 
interpolation for pixel data
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Example

Reflectance Values From An Areal Survey of Pollution 
Levels Due To Pumping Of Waste Material Into The 
English Channel
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Darker areas represent more 

polluted spots. This location is 

closest to the source of the 

pollution. 

Values in any one grid cell are 

averages over the cell and, due 

to location error, possibly 

include values in neighboring 

cells as well. 
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Autoregressive Lattice Models

is the response variable at location si

is the large-scale trend or mean for location si

may depend on explanatory variables or treatments 

is small-scale variation at location si

Depends on the values in the neighborhood and weights 

is the error term, conditionally independent with zero 
mean and constant variance 
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Additional Comments
The large-scale mean is usually dependent on explanatory 
variables such as covariates or treatment levels or even 
location (such as a trend surface that is a polynomial in 
space. 

The small scale variation can be used to calculate the 
conditional mean, that is the predicted value at a location 
using the covariates at a location and the values of 
observations around that location. The conditional mean is 
the sum of several parts: 1) the mean of the individual 
subplot, 

�
(si); 2) the weighted average of the error terms 

for all of the neighboring subplots. 
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Example of the Decomposition

Aquatic Species Richness in Caves in Southeast U.S.
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Additional Comments
These perspective plots show the decomposition of species richness 
values in counties throughout the southeast US. 

are shown in (a), a plot of the observed values of log (aquatic 
species richness) in counties in the southeast US. 

are shown in (b) a plot of the estimated county means of log 
(aquatic species richness) predicted by the explanatory variable, 
X=number of caves found in the county. 

are shown in (c), a plot of the estimated small-
scale variation in each county based on observations of log (aquatic 
species richness) in contiguous counties. The weights were wij = 1 if 
counties i and j were contiguous and wij = 0 if they were not. 

are shown in (d), a plot of the unexplained or residual noise. 

Note that the values in (b), (c ) and (d) add up to the observed values 
shown in (a).    
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Large-scale Variation  

Could be a function of factors being manipulated 

in a planned experiment

E.g. a split-plot design with a whole plot factor of 
crop rotation schedule and a subplot factor of 
nitrogen source

Could be explanatory variables being observed 

E.g. soil moisture in the bell pepper fungus study

E.g. the number of caves in a county to predict the 

species richness of aquatic subterranean animals   

)( isµ
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Small scale Variation 

Two parts 

Neighborhood structure

Weighting scheme 
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Constructing Neighborhoods

Depends on whether layout is regular or irregular

Every cell (plot, county) must have a defined 
neighborhood
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Example – Bell Pepper Fungus
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Additional Comments

The bell pepper fungus data was collected on a regular 
grid layout with 20 rows (“row1”) and 20 columns 
(“quad”)–

data for each of the 400 cells in the field plot. 

For example, while soil moisture may in fact vary over a 1x1 
m square plot, only a single number is reported for each 1x1 
m plot and so represents the value for that plot.

Showing two graphics here 
the left one is a perspective plot which shows the variation in 
soil moisture values

The right one shows the same information as color 
gradations for each cell for which we have data 
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Examples: Neighborhoods for Square Lattices
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Additional Comments

These neighborhoods are two of many possible 
examples – one can further change them or even use 
different setups. 

For example, in the case of the water moisture, one might 

expect that autocorrelation would be higher in the within row 

direction rather than across rows. This could be due to 

watering the field by flooding of the pathways between rows 
or of the beds are raised. In that case, the neighborhood 

might only be the plots adjacent and within the same row, say 

the N-S plots only.  
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Examples: Neighborhoods for Non-Square 
Lattices

Ni = {cells labeled A} is a neighborhood whose 

boundaries touch the boundary of the  ith cell 

Ni = {cells labeled A or X} is a neighborhood whose 

centroids are within a specified distance from the 
centroid of the ith cell 

X     A   A

A           A                

X   A     A
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Weighting Scheme 

The larger the weight the more that neighboring plot 
contributes  

Common approaches

As a function of Euclidean distance

As a function of contiguity

Directional weighting (certain directions contribute more than 

others)

As a function of the length of the common boundary 

Weighting to correct for heterogeneity of variance  

ijϖ
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Additional Comments

Weighting can involve some combination of 

these approaches and is clearly integrally related 

to the definition of the neighborhood.

Weights are usually standardized so that they  

sum to a constant, e.g.   

Negative weights (which imply a negative 

correlation) are usually avoided but there are 

times when they are appropriate.  
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Weighting Scheme 

Crucial to identify appropriate weighting method

Should have some idea of 

The range of likely autocorrelation

How fast autocorrelation decays as distance increases

The direction of likely autocorrelation

l The directionality is influenced by both the choice of 

neighborhood as well as differential weighting by direction. 

ijϖ
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Weighting Scheme 

Methods for exploring likely form of autocorrelation:

Calculate some common autocorrelation statistics such 
as Moran’s I or Geary’s C

l Validity depends on the neighborhood and weighting scheme

l Try different neighborhoods and weights 

Do variography using the centroids or nodes of a lattice 
as the point locations  

ijϖ
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Simple Weighting

Bell Pepper Fungus 

Let Ni be the 1x1 m plots having boundaries with the ith

plot (first-order NB)

Define the weights to be 

These weights imply 

l no directionality 

l each neighboring plot is equally autocorrelated with the ith

plot 

l The autocorrelation is the same regardless of the location of 

the ith plot 
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More Complex Weighting

Aquatic Cave Species in SE US

Defined the neighborhood to be counties with county 
seats within 56 km of the ith county 

Uses Euclidean distance to weight closer counties 
higher than farther counties
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Additional Comments

The numerator is a constant times the inverse of the 
distance between the 2 locations (inverse so that closer 
neighbors weight higher than further neighbors). 

The denominator is a scaling or standardizing function 
so that 

ρ
is the correlation between the ith county and 

its nearest neighbor. 

This approach is a type of “row standardization” and 
constrains the constant  

ρ
to be less than 1.
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Modeling
So, 

having identified the explanatory variables for the large-
scale variation (trend), 

the neighborhood structure and weighting scheme for 
the small-scale variation, and

checked for homogeneity of variance, 

the next step is 

to do the actual model fitting to obtain estimates of the 
model parameters, means (and SEMs) and, if desired, 
predictions (and MSPE). 
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Modeling Approaches

Two approaches    

Simultaneous Autoregressive Models (SAR models)

Conditional Autoregressive Models (CAR models) 

The difference is in the variance-covariance matrix 
for the {Y(s1), …, Y(sn)}

Both can be fitted but fitting the SAR model leads to 
residuals that are correlated with the neighboring Y-
values 

CAR model does not have this problem and is generally 
preferred
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Additional Comments

Every SAR model can be described in terms of a 

CAR model but CAR models are not always 

easily or naturally described as SAR models. 

This is based on the choices of neighborhoods 

and variance structure and weights.
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Simple Example – Reflectance Values 

for Pollution in the English Channel
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from Haining (1990)
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Additional Comments

Like the bell pepper fungus, this dataset is on a 

regular grid. So, the spatial coordinate system is 

taken to be 

the row ID, “r”, and 

the column ID, “c”. 

3/9/2006 USDA Spatial Models Workshop 42

Conditional Autoregressive Model

The error terms are conditionally independent 

and Normally distributed with mean 0 and 

constant variance 

σ2
The conditional mean of             is                          

and the unconditional mean is 
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Additional Comments

The conditional mean is the predicted value for 

an individual observation. The unconditional 

(marginal) mean is the mean of the trend part 

only. 

The conditional mean is estimated using the 

BLUP and the unconditional mean by the BLUE 

(LSmeans). 
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Conditional Autoregressive Model

The conditional variance of                                  

is                                                        

and the unconditional variance is 

where                    is the matrix version of the 

weights for the neighborhood 
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Large-Scale Trend

Haining (1990) started by ignoring the spatial 
autocorrelation and fit linear regression models 
using polynomials in (r, c) where r is the row ID, 
c is the column ID

He determined that the linear model had the best 
fit 
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Small-Scale Variation

We should now test for autocorrelation in the 
data, so we’ll use the residuals from the large-
scale trend fit 

Calculate Moran’s I for different neighborhood 
structures (see next slide) using weight = 1 if grid 
cell was in the neighborhood and 0 otherwise. 
From this we can tell 

If there is autocorrelation

Which neighborhood is best (among those reviewed 
of course)
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Small-Scale Variation

Neighborhood Moran’s I SE Normal 
Statistic 

Normal 
p-value 

Permutation 
p-value 

Row 0.3215 0.1164 2.869 0.004 0.001 

Column 0.5434 0.1164 4.775 0+ 0+ 

Diagonal 0.2043 0.0862 2.514 0.012 0.007 

First-order 0.4324 0.0814 5.468 0+ 0+ 

Second-order 0.3251 0.0577 5.848 0+ 0+ 

The highest Moran’s I value occurs for the column 

neighborhood and the second highest for the first-order 

neighborhood. 
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Additional Comments

Under the null hypothesis of no autocorrelation, the 
expected value of Moran’s I is E{I} = -1/(n-1). The stronger 
the correlation, the closer I is to 1.
Two approaches for testing autocorrelation using Moran’s I 
are:
1) approximate normality holds assuming the number of 
cells is sufficiently large (also depends on the extent and 
manner in which the cells are connected by the weights). 
The usual rule of thumb is at least 20 locations.
2) permutation or randomization test in which the Z data 
are randomly permuted (assigned to different locations) 
repeatedly and the observed results compared against the 
expected results. 
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Fit the CAR model 

Model β0 

Estimate 
β1 

Estimate 
β2 

Estimate 
ρ 

Estimate 
Root 
MSE 

Log 
Likel. 

1 50.966** -2.733** -2.131* 0.256** 9.02 -362 
2 53.755** -2.966** -1.757** 0.442** 8.85 -364 
1a 60.289** -3.467** -2.050* 0.251** 10.00 -211 

Model was fit with a linear trend and with weights wij=

ρ

if plot j was in the neighborhood and = 0 otherwise.  

Models:  (1) first-order neighborhood with 9x9 area
(2) column neighborhood with 9x9 area
(1a) first-order neighborhood with 8x8 interior area    
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Additional Comments

There is very little difference in the models with the two 
different neighborhood structures, so for parsimony 
choose the model using the column neighborhood

Note that the estimated spatial weight is 0.256 for the 
first-order neighborhood and 0.44 for the column 
neighborhood. The difference in values has more to do 
with the number of neighbors in the neighborhood than 
with any estimate of autocorrelation. 

The final model is the result of adjusting for boundary 
effects (next).  
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Boundary Effects

The neighborhoods of 

the cells on the edges 

are halved 

Standard errors of predictions at the edges very high

Introduces possible estimation bias 

One way to avoid is to analyze only that part of 

the study region completely within the entire 

region
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Additional Comments

Choose the subregion within the study area so that 
every cell in the subregion has a complete 
neighborhood that can be used in the modeling

In the bell pepper example, that would be a subregion
19x19 (rather than 20x20) that would be modeled (Y-
values on the left side of the model). The remaining 
cells would appear only on the right side of the model in 
the small-scale variation.  
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Fit the CAR model 

Model β0 

Estimate 
β1 

Estimate 
β2 

Estimate 
ρ 

Estimate 
Root 
MSE 

Log 
Likel. 

1 50.966** -2.733** -2.131* 0.256** 9.02 -362 
2 53.755** -2.966** -1.757** 0.442** 8.85 -364 
1a 60.289** -3.467** -2.050* 0.251** 10.00 -211 

Model was fit with a linear trend and with weights wij=

ρ

if plot j was in the neighborhood and = 0 otherwise.  

Models:  (1) first-order neighborhood with 9x9 area
(2) column neighborhood with 9x9 area
(1a) first-order neighborhood with 8x8 interior area    
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Additional Comments

Note the difference between model 1 and model 

1a in the estimates of the model coefficients. 

Due to

smaller number of observations (64 vs. 81)

Better estimation of the spatial autocorrelation since 
every observations has a full neighborhood
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Summary and Conclusions

When data are collected in aggregate for non-

overlapping subregions of the study area and

The spatial arrangement is such that there are 

effects due to space (or to spatial covariates that 

were not measured) 

Then consider models that incorporate an effect 

due to spatial correlation
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Advantages

Accounts for some additional sources of 

variation 

Increases understanding of the process of 

interest 

Overall lattice models are excellent approaches 

for incorporating spatial correlation and for 

providing improved predictions
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Caveats When Fitting Lattice Models

If covariates are available that explain the seeming 
spatial correlation, then these are more appropriately 
used

Choice of neighborhood and weighting scheme are 
critical to good model fitting 

Sample sizes could be too small to adequately estimate 
the spatial correlation 

Modeling might require a lot of exploratory analyses. 
Note that this means that the conclusions are only 
tentative and should be independently tested with a new 
experiment.




